Clinical references
Armstrong, R. (2011). Visual Symptoms in Parkinson's Disease. Parkinson's disease. 2011. 908306. 10.4061/2011/908306
Buranelli, G., Barbosa, M. B., Dutra Garcia, C. F., Duarte, S. G., Marangoni, A. C., de F. Rodrigues Coelho, L. M., Barbosa Reis, A. C. M., and de Lima Isaac, M. Mismatch Negativity (MMN) response studies in elderly subjects. Braz J Otorhinolaryngol. 2009;75(6):831-8.
Cai, C., Ogawa, K., Kochiyama, T., Tanaka, H., Imamizu, H. Temporal recalibration of motor and visual potentials in lag adaptation in voluntary movement, NeuroImage, Volume 172, 2018. Pages 654-662,
ISSN 1053-8119, https://doi.org/10.1016/j.neuroimage.2018.02.015
Cazorla M, Kang UJ, Kellendonk C. Balancing the Basal Ganglia Circuitry: A Possible New Role for Dopamine D2 Receptors in Health and Disease. Movement disorders : official journal of the Movement Disorder Society. 2015;30(7):895-903. doi:10.1002/mds.26282
Cepeda, C., André, V. M., Jocoy, E. L., Levine, M. S. “Chapter 3 NMDA and Dopamine: Diverse Mechanisms Applied to Interacting Receptor Systems,” Van Dongen AM, editor. Biology of the NMDA Receptor. 2009. CRC Press/ Taylor & Francis. ISBN-13: 978-1-4200-4414-0
Cheng D, Jenner AM, Shui G, Cheong WF, Mitchell TW, Nealon JR, et al. (2011) Lipid Pathway Alterations in Parkinson's Disease Primary Visual Cortex. PLoS ONE 6(2): e17299. https://doi.org/10.1371/journal.pone.0017299
Cools, R., and Robbins, T.W. Chemistry of the adaptive mind. Phil. Trans. R. Soc. Lond. A (2004) 362, 2871–2888. http://doi.org/10.1098/rsta.2004.1468
Crevits, Luc. (2003). Abnormal psychophysical visual perception in Parkinson's disease patients. Acta neurologica Belgica. 103. 83-7.
Crump, F.T., Dillman, K.S., and Craig, A.M. cAMP-Dependent Protein Kinase Mediates Activity-Regulated
Synaptic Targeting of NMDA Receptors. The Journal of Neuroscience, July 15, 2001, 21(14):5079–5088
Dalrymple-Alford JC., Kalders AS., Jones RD. and Watson RW. (1994) A central executive deficit in patients with Parkinson's disease. Journal of Neurology Neurosurgery & Psychiatry 57(3): 360-367. http://dx.doi.org/10.1136/jnnp.57.3.360. (Journal Articles)
Dudman JT, Eaton ME, Rajadhyaksha A, et al. Dopamine D1 receptors mediate CREB phosphorylation via phosphorylation of the NMDA receptor at Ser897–NR1. Journal of neurochemistry. 2003;87(4):922-934.
Ferreria,L., Mas-Herrerod,E., Zatorred, R. J., Ripollésf, P., Gomez-Andresa, A., Alicarta, H., Olivéa, G., Marco-Pallarésa, J., Antonijoanh, R. M., Vallei, M., Ribak, J., and Rodriguez-Fornells, A. Dopamine modulates the reward experiences elicited by music. https://www.pnas.org/cgi/doi/10.1073/pnas.1811878116
Flowers, A., Kenneth & Robertson, Colin. (1995). Perceptual abnormalities in Parkinson’s disease: Top-down or bottom-up processes. Perception. 24. 1201-21. 10.1068/p241201.
Folstein, J. R., and Van Petten, C. Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology. 2007.
Garrido, M. I., Kilner, J. M., Stephan, K.L., Friston, K.J. The mismatch negativity: A review of underlying mechanisms. Clinical Neurophysiology 120 (2009) 453–463. doi:10.1016/j.clinph.2008.11.029
Goodale MA. How (and why) the visual control of action differs from visual perception. Proceedings of the Royal Society B: Biological Sciences. 2014;281(1785):20140337. doi:10.1098/rspb.2014.0337
Jahanshahi, M., Jones, C. R. G., Zijlmans, J., Katzenschlager, R., Lee, L., Quinn, N., Frith, C. D., and Lees, A. J. Dopaminergic modulation of striato-frontal connectivity during motor timing in Parkinson’s disease. Brain 2010: 133; 727–745. doi:10.1093/brain/awq012
Jones, Richard & M. Donaldson, Ivan & Timmings, Paul. (1992). Impairment of high-contrast visual acuity in Parkinson's disease. Movement disorders : official journal of the Movement Disorder Society. 7. 232-8. 10.1002/mds.870070308.
Kaminski, J., Mamelak, A. N., Birch, K., Mosher, C. P., Tagliati, M., and Rutishauser, U. Novelty-Sensitive Dopaminergic Neurons in the Human Substantia Nigra Predict Success of Declarative Memory Formation. , 2018, Current Biology 28, 1333–1343 https://doi.org/10.1016/j.cub.2018.03.024
Kelley, R., Flouty, O., Emmons, E. B., Kim, Y., Kingyon, J., Wessel, J. R., Oya, H., Greenlee, J. D., and Narayanan, N. S. A human prefrontal-subthalamic circuit for cognitive control, Brain, awx300, https://doi.org/10.1093/brain/awx300
Lee E-Y, Cowan N, Vogel EK, Rolan T, Valle-Inclán F, Hackley SA. Visual working memory deficits in patients with Parkinson’s disease are due to both reduced storage capacity and impaired ability to filter out irrelevant information. Brain. 2010;133(9):2677-2689. doi:10.1093/brain/awq197
Ma J, Ma S, Zou H, Zhang Y, Chan P, Ye Z (2018) Impaired serial ordering in nondemented patients with mild Parkinson’s disease. PLoS ONE 13(5): e0197489. https://doi.org/10.1371/journal.pone.0197489
Marti, M., Mela, F., Bianchi, C., Beani, L., and Morari, M. Striatal dopamine–NMDA receptor interactions in the modulation of glutamate release in the substantia nigra pars reticulata in vivo: opposite role for D1 and D2 receptors. Journal of Neurochemistry, 2002, 83, 635–644. https://doi.org/10.1046/j.1471-4159.2002.01169.x
Melief, E. J., McKinley, J. W., Lam, J. Y., Whiteley, N. M., Gibson, A. W., Neumaier, J. F., Henschen, C. W., Palmiter, R. D., Bamford, N. S., and Darvas, M. Loss of glutamate signaling from the thalamus to dorsal striatum impairs motor function and slows the execution of learned behaviors. npj Parkinson's Disease volume 4, Article number: 23 (2018). https://doi.org/10.1038/s41531-018-0060-6
Michely, J., Volz, L. J., Barbe, M.T., Hoffstaedter, F., Viswanathan, S., Timmermann, L., Eickhoff, S. B., Fink, G. R. and Grefkes, C. Dopaminergic modulation of motor network dynamics in Parkinson’s disease, Brain, Volume 138, Issue 3, 1 March 2015, Pages 664–678, https://doi.org/10.1093/brain/awu381
Näätänen, R., Kujala, T., Kreegipuu, K., Carlson, S., Escera, C., Baldeweg, T., and Ponton, C. The mismatch negativity: an index of cognitive decline in neuropsychiatric and neurological diseases and in ageing. Brain 2011: 134; 3435–3453. doi:10.1093/brain/awr064
Nair PS, Kuusi T, Ahvenainen M, Philips AK, Järvelä I. 2019. Music-performance regulates microRNAs in
professional musicians. PeerJ 7:e6660 DOI 10.7717/peerj.6660
Oishi, M., Ashoori, A., & McKeown, M. (2010). Mode Detection in Switched Pursuit Tracking Tasks: Hybrid Estimation to Measure Performance in Parkinson's Disease. Proceedings of the IEEE Conference on Decision and Control. 2124-2130. 10.1109/CDC.2010.5717202.
Pifl C, Kish SJ, Hornykiewicz O. Thalamic noradrenaline in Parkinson’s disease: deficits suggest role in motor and non-motor symptoms. Movement disorders : official journal of the Movement Disorder Society. 2012;27(13):1618-1624. doi:10.1002/mds.25109
Rangel-Gomez M, Hickey C, van Amelsvoort T, Bet P, Meeter M (2013) The Detection of Novelty Relies on Dopaminergic Signaling: Evidence from Apomorphine's Impact on the Novelty N2. PLoS ONE 8(6): e66469. https://doi.org/10.1371/journal.pone.0066469
Roberts P, Spiros A and Geerts H. (2016) A Humanized Clinically Calibrated Quantitative Systems
Pharmacology Model for Hypokinetic Motor Symptoms in Parkinson’s Disease. Front. Pharmacol. 7:6. doi: 10.3389/fphar.2016.00006
Rottschy C, Kleiman A, Dogan I, Langner R, Mirzazade S, Kronenbuerger M, et al. (2013) Diminished Activation of Motor Working-Memory Networks in Parkinson's Disease. PLoS ONE 8(4): e61786. https://doi.org/10.1371/journal.pone.0061786
Saul Jaime, Hong Gu, Brian F Sadacca, Elliot A Stein, Jose E Cavazos, Yihong Yang, Hanbing Lu; Delta Rhythm Orchestrates the Neural Activity Underlying the Resting State BOLD Signal via Phase–amplitude Coupling, Cerebral Cortex, https://doi.org/10.1093/cercor/bhx310
Savitz, J., Solms, M. and Ramesar, R. (2006), The molecular genetics of cognition: dopamine, COMT and BDNF. Genes, Brain and Behavior, 5: 311–328. doi:10.1111/j.1601-183X.2005.00163.x
Tanaka, S., and Kirino, E. Functional Connectivity of the dorsal striatum in female musicians. Front. Hum. Neurosci., 22 April 2016. https://doi.org/10.3389/fnhum.2016.00178
Tanaka, S., and Kirino, E. Reorganization of the thalamocortical network in musicians. Brain Research 1664 (2017) 48-54. http://dx.doi.org/10.1016/j.brainres.2017.03.027
Warburton EC, Barker GRI, Brown MW. Investigations into the involvement of NMDA mechanisms in recognition memory. Neuropharmacology. 2013;74(100):41-47. doi:10.1016/j.neuropharm.2013.04.013
Weil, Rimona & Schrag, Anette & Warren, Jason & Crutch, Sebastian & J. Lees, Andrew & R. Morris, Huw. (2016). Visual dysfunction in Parkinson’s disease. Brain. 139. aww175. 10.1093/brain/aww175.
Westbrook, A., and Braver, T.S. Dopamine Does Double Duty in Motivating Cognitive Effort. Neuron 89, February 17, 2016. 695-710. http://dx.doi.org/10.1016/j.neuron.2015.12.029
Zhan, A., Mohan, S., Tarolli, C., Schneider, R.B., Adams, J.L., Sharma, S., Elson, M.J., Spear, K. L., Glidden, A. M., Little, M. A., Terzis, A., Dorsey, E. R., and Saria, S. Using Smartphones and Machine Learning to Quantify Parkinson Disease Severity: The Mobile Parkinson Disease Score. JAMA Neurol. doi:10.1001/jamaneurol.2018.0809
Buranelli, G., Barbosa, M. B., Dutra Garcia, C. F., Duarte, S. G., Marangoni, A. C., de F. Rodrigues Coelho, L. M., Barbosa Reis, A. C. M., and de Lima Isaac, M. Mismatch Negativity (MMN) response studies in elderly subjects. Braz J Otorhinolaryngol. 2009;75(6):831-8.
Cai, C., Ogawa, K., Kochiyama, T., Tanaka, H., Imamizu, H. Temporal recalibration of motor and visual potentials in lag adaptation in voluntary movement, NeuroImage, Volume 172, 2018. Pages 654-662,
ISSN 1053-8119, https://doi.org/10.1016/j.neuroimage.2018.02.015
Cazorla M, Kang UJ, Kellendonk C. Balancing the Basal Ganglia Circuitry: A Possible New Role for Dopamine D2 Receptors in Health and Disease. Movement disorders : official journal of the Movement Disorder Society. 2015;30(7):895-903. doi:10.1002/mds.26282
Cepeda, C., André, V. M., Jocoy, E. L., Levine, M. S. “Chapter 3 NMDA and Dopamine: Diverse Mechanisms Applied to Interacting Receptor Systems,” Van Dongen AM, editor. Biology of the NMDA Receptor. 2009. CRC Press/ Taylor & Francis. ISBN-13: 978-1-4200-4414-0
Cheng D, Jenner AM, Shui G, Cheong WF, Mitchell TW, Nealon JR, et al. (2011) Lipid Pathway Alterations in Parkinson's Disease Primary Visual Cortex. PLoS ONE 6(2): e17299. https://doi.org/10.1371/journal.pone.0017299
Cools, R., and Robbins, T.W. Chemistry of the adaptive mind. Phil. Trans. R. Soc. Lond. A (2004) 362, 2871–2888. http://doi.org/10.1098/rsta.2004.1468
Crevits, Luc. (2003). Abnormal psychophysical visual perception in Parkinson's disease patients. Acta neurologica Belgica. 103. 83-7.
Crump, F.T., Dillman, K.S., and Craig, A.M. cAMP-Dependent Protein Kinase Mediates Activity-Regulated
Synaptic Targeting of NMDA Receptors. The Journal of Neuroscience, July 15, 2001, 21(14):5079–5088
Dalrymple-Alford JC., Kalders AS., Jones RD. and Watson RW. (1994) A central executive deficit in patients with Parkinson's disease. Journal of Neurology Neurosurgery & Psychiatry 57(3): 360-367. http://dx.doi.org/10.1136/jnnp.57.3.360. (Journal Articles)
Dudman JT, Eaton ME, Rajadhyaksha A, et al. Dopamine D1 receptors mediate CREB phosphorylation via phosphorylation of the NMDA receptor at Ser897–NR1. Journal of neurochemistry. 2003;87(4):922-934.
Ferreria,L., Mas-Herrerod,E., Zatorred, R. J., Ripollésf, P., Gomez-Andresa, A., Alicarta, H., Olivéa, G., Marco-Pallarésa, J., Antonijoanh, R. M., Vallei, M., Ribak, J., and Rodriguez-Fornells, A. Dopamine modulates the reward experiences elicited by music. https://www.pnas.org/cgi/doi/10.1073/pnas.1811878116
Flowers, A., Kenneth & Robertson, Colin. (1995). Perceptual abnormalities in Parkinson’s disease: Top-down or bottom-up processes. Perception. 24. 1201-21. 10.1068/p241201.
Folstein, J. R., and Van Petten, C. Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology. 2007.
Garrido, M. I., Kilner, J. M., Stephan, K.L., Friston, K.J. The mismatch negativity: A review of underlying mechanisms. Clinical Neurophysiology 120 (2009) 453–463. doi:10.1016/j.clinph.2008.11.029
Goodale MA. How (and why) the visual control of action differs from visual perception. Proceedings of the Royal Society B: Biological Sciences. 2014;281(1785):20140337. doi:10.1098/rspb.2014.0337
Jahanshahi, M., Jones, C. R. G., Zijlmans, J., Katzenschlager, R., Lee, L., Quinn, N., Frith, C. D., and Lees, A. J. Dopaminergic modulation of striato-frontal connectivity during motor timing in Parkinson’s disease. Brain 2010: 133; 727–745. doi:10.1093/brain/awq012
Jones, Richard & M. Donaldson, Ivan & Timmings, Paul. (1992). Impairment of high-contrast visual acuity in Parkinson's disease. Movement disorders : official journal of the Movement Disorder Society. 7. 232-8. 10.1002/mds.870070308.
Kaminski, J., Mamelak, A. N., Birch, K., Mosher, C. P., Tagliati, M., and Rutishauser, U. Novelty-Sensitive Dopaminergic Neurons in the Human Substantia Nigra Predict Success of Declarative Memory Formation. , 2018, Current Biology 28, 1333–1343 https://doi.org/10.1016/j.cub.2018.03.024
Kelley, R., Flouty, O., Emmons, E. B., Kim, Y., Kingyon, J., Wessel, J. R., Oya, H., Greenlee, J. D., and Narayanan, N. S. A human prefrontal-subthalamic circuit for cognitive control, Brain, awx300, https://doi.org/10.1093/brain/awx300
Lee E-Y, Cowan N, Vogel EK, Rolan T, Valle-Inclán F, Hackley SA. Visual working memory deficits in patients with Parkinson’s disease are due to both reduced storage capacity and impaired ability to filter out irrelevant information. Brain. 2010;133(9):2677-2689. doi:10.1093/brain/awq197
Ma J, Ma S, Zou H, Zhang Y, Chan P, Ye Z (2018) Impaired serial ordering in nondemented patients with mild Parkinson’s disease. PLoS ONE 13(5): e0197489. https://doi.org/10.1371/journal.pone.0197489
Marti, M., Mela, F., Bianchi, C., Beani, L., and Morari, M. Striatal dopamine–NMDA receptor interactions in the modulation of glutamate release in the substantia nigra pars reticulata in vivo: opposite role for D1 and D2 receptors. Journal of Neurochemistry, 2002, 83, 635–644. https://doi.org/10.1046/j.1471-4159.2002.01169.x
Melief, E. J., McKinley, J. W., Lam, J. Y., Whiteley, N. M., Gibson, A. W., Neumaier, J. F., Henschen, C. W., Palmiter, R. D., Bamford, N. S., and Darvas, M. Loss of glutamate signaling from the thalamus to dorsal striatum impairs motor function and slows the execution of learned behaviors. npj Parkinson's Disease volume 4, Article number: 23 (2018). https://doi.org/10.1038/s41531-018-0060-6
Michely, J., Volz, L. J., Barbe, M.T., Hoffstaedter, F., Viswanathan, S., Timmermann, L., Eickhoff, S. B., Fink, G. R. and Grefkes, C. Dopaminergic modulation of motor network dynamics in Parkinson’s disease, Brain, Volume 138, Issue 3, 1 March 2015, Pages 664–678, https://doi.org/10.1093/brain/awu381
Näätänen, R., Kujala, T., Kreegipuu, K., Carlson, S., Escera, C., Baldeweg, T., and Ponton, C. The mismatch negativity: an index of cognitive decline in neuropsychiatric and neurological diseases and in ageing. Brain 2011: 134; 3435–3453. doi:10.1093/brain/awr064
Nair PS, Kuusi T, Ahvenainen M, Philips AK, Järvelä I. 2019. Music-performance regulates microRNAs in
professional musicians. PeerJ 7:e6660 DOI 10.7717/peerj.6660
Oishi, M., Ashoori, A., & McKeown, M. (2010). Mode Detection in Switched Pursuit Tracking Tasks: Hybrid Estimation to Measure Performance in Parkinson's Disease. Proceedings of the IEEE Conference on Decision and Control. 2124-2130. 10.1109/CDC.2010.5717202.
Pifl C, Kish SJ, Hornykiewicz O. Thalamic noradrenaline in Parkinson’s disease: deficits suggest role in motor and non-motor symptoms. Movement disorders : official journal of the Movement Disorder Society. 2012;27(13):1618-1624. doi:10.1002/mds.25109
Rangel-Gomez M, Hickey C, van Amelsvoort T, Bet P, Meeter M (2013) The Detection of Novelty Relies on Dopaminergic Signaling: Evidence from Apomorphine's Impact on the Novelty N2. PLoS ONE 8(6): e66469. https://doi.org/10.1371/journal.pone.0066469
Roberts P, Spiros A and Geerts H. (2016) A Humanized Clinically Calibrated Quantitative Systems
Pharmacology Model for Hypokinetic Motor Symptoms in Parkinson’s Disease. Front. Pharmacol. 7:6. doi: 10.3389/fphar.2016.00006
Rottschy C, Kleiman A, Dogan I, Langner R, Mirzazade S, Kronenbuerger M, et al. (2013) Diminished Activation of Motor Working-Memory Networks in Parkinson's Disease. PLoS ONE 8(4): e61786. https://doi.org/10.1371/journal.pone.0061786
Saul Jaime, Hong Gu, Brian F Sadacca, Elliot A Stein, Jose E Cavazos, Yihong Yang, Hanbing Lu; Delta Rhythm Orchestrates the Neural Activity Underlying the Resting State BOLD Signal via Phase–amplitude Coupling, Cerebral Cortex, https://doi.org/10.1093/cercor/bhx310
Savitz, J., Solms, M. and Ramesar, R. (2006), The molecular genetics of cognition: dopamine, COMT and BDNF. Genes, Brain and Behavior, 5: 311–328. doi:10.1111/j.1601-183X.2005.00163.x
Tanaka, S., and Kirino, E. Functional Connectivity of the dorsal striatum in female musicians. Front. Hum. Neurosci., 22 April 2016. https://doi.org/10.3389/fnhum.2016.00178
Tanaka, S., and Kirino, E. Reorganization of the thalamocortical network in musicians. Brain Research 1664 (2017) 48-54. http://dx.doi.org/10.1016/j.brainres.2017.03.027
Warburton EC, Barker GRI, Brown MW. Investigations into the involvement of NMDA mechanisms in recognition memory. Neuropharmacology. 2013;74(100):41-47. doi:10.1016/j.neuropharm.2013.04.013
Weil, Rimona & Schrag, Anette & Warren, Jason & Crutch, Sebastian & J. Lees, Andrew & R. Morris, Huw. (2016). Visual dysfunction in Parkinson’s disease. Brain. 139. aww175. 10.1093/brain/aww175.
Westbrook, A., and Braver, T.S. Dopamine Does Double Duty in Motivating Cognitive Effort. Neuron 89, February 17, 2016. 695-710. http://dx.doi.org/10.1016/j.neuron.2015.12.029
Zhan, A., Mohan, S., Tarolli, C., Schneider, R.B., Adams, J.L., Sharma, S., Elson, M.J., Spear, K. L., Glidden, A. M., Little, M. A., Terzis, A., Dorsey, E. R., and Saria, S. Using Smartphones and Machine Learning to Quantify Parkinson Disease Severity: The Mobile Parkinson Disease Score. JAMA Neurol. doi:10.1001/jamaneurol.2018.0809